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Outline

Overview of the hypothalmus-pituitary-testicular axis.
Introduce the deterministic model.

Reconsider the model as a stochastic model.

* Incorporate intrinsic fluctuations.
* The Gillespie Algorithm.
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Interesting Biology

Approximately 90% to 95% of testosterone in men is produced by the
testes with typical blood testosterone levels in the range of 3 to 10 ng/mL.
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Interesting Biology

Approximately 90% to 95% of testosterone in men is produced by the
testes with typical blood testosterone levels in the range of 3 to 10 ng/mL.

These levels have been experimentally observed to oscillate with a period
of about 2 to 3 hours.

An imbalance can cause dramatic changes (mood, acne, and weight).

Pathway Is associated with many other important processes in the body.
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The Hypothalmus-Pituitary-Testicular Axis

Neurosecretory cells
of the hypothalamus

Portal vessels

Hypothalamic
hormones

Endocrine cells of the
anterior pituitary

Pituitary
hormones

/ v ¥ v

Growth Prolactin Follicle-stimulating Thyroid-stimulating ~ ACTH MSH Endorphins
hormone (PRL) hormone (FSH) hormone (TSH)

(GH) and luteinizing
l hormone (LH)
Bones Mammary Testes or Thyroid Adrenal  Melanocytes Pain receptors

glands ovaries cortex in the brain



MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 4

The Hormone Secretion Signaling System
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Experimental Observations
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The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR
= f(T)—b
dL
= = giR — byL

ar _
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History of the Model

Goodwin (1964) first proposed the model to demonstrate oscillatory
behavior in enzymatic control processes.

Smith (1980) studied slight variation involving a Hill coefficient in f(7T').

Murray (1989) suggested using a time-delay in the production rate of 7.

Enciso and Sontag (2004) proved that the system has a globally stable
fixed point (regardless of the length of the time-delay) and therefore does
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The Fixed Point

The system of differential equations has a fixed point wherever
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The Fixed Point

The system of differential equations has a fixed point wherever

1
RY = — £(T*
(1)
=R
b2
T =21
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Stability of the Fixed Point

The characteristic equation of the linearized system near the fixed point is

(A+b1)(A+D2)(A+b3) — f(T")g1g2 = 0

which only has solutions with negative real parts, i.e. Re(\) < 0.
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Reconsider the Physical Basis of the Problem

Take seriously the fact that events, such as the production or degradation of
hormone molecules, occur in an essentially random manner. Intrinsic
fluctuations play an important role when there are low numbers of molecules
present.
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Reconsider the Physical Basis of the Problem

Take seriously the fact that events, such as the production or degradation of
hormone molecules, occur in an essentially random manner. Intrinsic
fluctuations play an important role when there are low numbers of molecules
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Modeling Approaches

Three types of modeling regimes: discrete and stochastic, continuous and
stochastic, and continuous and deterministic regimes.

Deterministic: the law of mass action.

Stochastic: the chemical master equation.
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Stochastic Simulations

Most biochemical networks are very complex and it is not possible to obtain
analytic solutions when modeling them. For this reason, we turn to
stochastic simulation algorithms.
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The Chemical Master Equation

The master equation is the time-evolution equation for the function P(n,t),
where n; is the number of molecules of species X; in a well-mixed volume.




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 13

The Chemical Master Equation

The master equation is the time-evolution equation for the function P(n,t),
where n; Is the number of molecules of species X; in a well-mixed volume. If
there are M different reactions (events) then we have

P(n,t+dt) = P(n t)P(there is no change within dt)

- Z P(n — s, t)P(reaction x occurs within dt),

7 7




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 13

The Chemical Master Equation

The master equation is the time-evolution equation for the function P(n,t),
where n; Is the number of molecules of species X; in a well-mixed volume. If
there are M different reactions (events) then we have

P(n,t+dt) = P(n t)P(there is no change within dt)

- Z P(n — s, t)P(reaction x occurs within dt),

7 7




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 14

The Reaction Probability Density Function

So we ask: “When will the next event occur and what type of event will it be?”
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Density Function Contd...

Let

§)
ag — E a;
1=1

Po(t + dt) = Pg(t)(l — ant)
or, rearranging a little, we have

then we have
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Density Function Contd...

So we have
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Schematic of the Density Function
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The Probabillity Distribution Function

To generate a random value z according to a given density function P(x) we
need to use the inversion method, by which we simply draw a random number
r from the uniform distribution in the unit interval and take = such that

—1
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The Gillespie Algorithm

So choose r; and ro from uniform distribution in the unit interval and
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The Stochastic Hormone Model

We have the same model

— = f(T) =0
7 f(T)—bbR
dL

IR —bol
dt g1 2
T
d—=g2L—b3T




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 20

The Stochastic Hormone Model

We have the same model

— = f(T) =0
7 f(T)—bbR
dL

R —boL
dt g1 2
T
d—=g2L—b3T




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 21

A Stochastic Simulation
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A Stochastic Simulation
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Deterministic Model Trajectories
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Solution trajectories for the deterministic hormone secretion model using parameter values
equivalent to those used in the stochastic simulation. Initial conditions used for Gn RH are




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS

Deterministic Model Trajectories
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Period Sensitivity Analysis
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A Stochastic Simulation
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Simulation of hormone secretion for parameter values, A = 1074 K = 1077, by = 0.23,
b, = 0.07,b3 = 0.1, g1 = 0.2618, and g5 = 0.9015. Average number of molecules are
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A Stochastic Simulation
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Lomb Spectral Analysis
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Peak-to-Peak Time Histogram
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Peak-to-Peak Amplitude

Amplitude of peak k+1 (# of T molecules)
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The Switching Behavior
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Approximation Methods

Gibson and Bruck (2000) proposed an approximation for systems in which
some reactions occur much more often than others by reducing the number
of random variables simulated.

Gillespie (2001) introduced the 7-leap methods that make larger time steps
and allow more events to occur within those steps as long as changes in
the event probabilities stay within some tolerance.

Burrage and Tian (2003) attempted to simulate continuous-time,
continuous-state, stochastic-approximation, models driven by Wiener noise
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Conclusions

By approaching the hormone model from a different physical basis we saw
how intrinsic fluctuations can incite oscillations for low numbers of
molecules by way of a switching behavior.

Even though the deterministic model has a globally stable fixed point, the
stochastic model was able to capture the pulsatile behavior of the blood
hormone levels.

When we are interested in the effects of intrinsic fluctuations and are not
able to obtain analytic results, we can rely on simulation methods such as
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Future Work

Do a Poincaré-map-like analysis of the oscillations we see with the
stochastic model and study the resulting distribution.

We are interested in finding out more about the relationship between the
deterministic and stochastic frequencies.

Further details can be incorporated into the model, such as basal hormone
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